An exercise that GPT-4 fails to solve
Dr. Dongyi Wei is an assistant professor at the School of Mathematical Sciences of Peking University. He recently proposed the below exercise that GPT-4 fails to solve. I propose in this post two solutions, a direct one and another one based on functional analysis.
Exercise. Let $\{a_1, \dots, a_n\} \subseteq (-1, 1)$ be given. Show that $$\prod_{1 \le i, j \le n} \frac{1 + a_i a_j}{1 - a_i a_j} \ge 1.$$
Direct proof
Remark that we only need to prove that $$\sum_{1 \le i, j \le n} \log ( 1 + a_i a_j ) - \log ( 1 - a_i a_j ) \ge 0.$$ Recall that for all $t \in (-1, 1)$, we have $$\log(1 + t) = \sum_{k = 1}^{\infty} \frac{(-1)^{k + 1} t^k}{k}.$$ Therefore, we have $$\begin{aligned} \sum_{1 \le i, j \le n} \log ( 1 + a_i a_j ) - \log ( 1 - a_i a_j ) & = \sum_{1 \le i, j \le n} \sum_{k = 1}^{\infty} \frac{(-1)^{k + 1} a_i^k a_j^k}{k} + \frac{a_i^k a_j^k}{k}\\ & = \sum_{1 \le i, j \le n} \sum_{k = 0}^{\infty} \frac{2 a_i^{2 k + 1} a_j^{2 k + 1}}{2 k + 1}\\ & = \sum_{k = 0}^{\infty} \frac{2}{2 k + 1} \sum_{1 \le i, j \le n} a_i^{2 k + 1} a_j^{2 k + 1}\\ & = \sum_{k = 0}^{\infty} \frac{2}{2 k + 1} \bigg( \sum_{i = 1}^n a_i^{2 k + 1} \bigg)^2 \ge 0. \end{aligned}$$ The last equality is the key to the proof, although it is not obvious at first sight.
Proof based on functional analysis
This proof has been proposed to me by Dr. Zaikun Zhang. It reformulates the above problem into a (more general) $2$-dimensional problem. We first prove the following theorem.
Theorem. Let $f$ be an integrable function on $\mathbb{R}$ with $\lVert f \rVert_{\infty} < 1$. Then $$\iint_{\mathbb{R}^2} \log \big( 1 + f ( x ) f ( y ) \big) \mathrm{d} x \mathrm{d} y \ge \iint_{\mathbb{R}^2} \log \big( 1 - f ( x ) f ( y ) \big) \mathrm{d} x \mathrm{d} y$$
Proof. In a similar way as in the direct proof, since $\lVert f \rVert_{\infty} < 1$, for $( x, y ) \in \mathbb{R}^2$, we have $$\log \big( 1 + f ( x ) f ( y ) \big) - \log \big( 1 - f ( x ) f ( y ) \big) = \sum_{k = 0}^{\infty} \frac{2 f^{2k + 1} ( x ) f^{2k + 1} ( y )}{2k + 1}.$$ Therefore, the integrability of $f$ and the fact that $\lVert f \rVert_{\infty} < 1$ provide $$\begin{aligned} \iint_{\mathbb{R}^2} \big[ \log \big( 1 + f ( x ) f ( y ) \big) - \log \big( 1 - f ( x ) f ( y ) \big) \big] \mathrm{d} x \mathrm{d} y & = \sum_{k = 0}^{\infty} \frac{2}{2k + 1} \iint_{\mathbb{R}^2} f^{2k + 1} ( x ) f^{2k + 1} ( y ) \mathrm{d} x \mathrm{d} y\\ & = \sum_{k = 0}^{\infty} \frac{2}{2k + 1} \bigg( \int_{\mathbb{R}} f^{2k + 1} ( x ) \mathrm{d} x \bigg)^2 \ge 0, \end{aligned}$$ which concludes the proof.
The solution to the original problem is a straightforward consequence of the above theorem, with $$f(x) = \begin{cases} a_1 & \text{if $0 \le x < 1$,}\\ \vdots\\ a_n & \text{if $n - 1 \le x < n$,}\\ 0 & \text{otherwise.} \end{cases}$$